Highlights from the 2020 State of the Market Report for the NYISO Markets: Energy & Ancillary Services Market Issues

Presented by:

Pallas LeeVanSchaick NYISO Market Monitoring Unit Potomac Economics

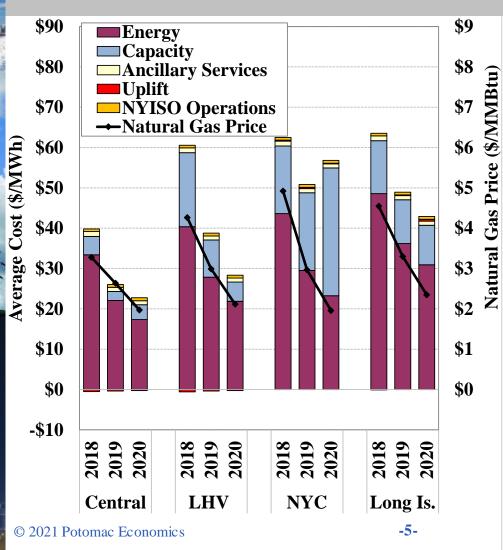
June 25, 2021

Introduction

- As the Market Monitoring Unit for NYISO, we produce an annual State of the Market (SOM) Report to:
 - ✓ Evaluate the performance if the markets;
 - ✓ Identify market flaws or market power concerns; and
 - \checkmark Recommend improvements in the market design.
- Given the breadth of the report, this presentation covers only highlights from our 2020 SOM Report related to energy and ancillary services markets, including:
 - ✓ A summary of E&AS market outcomes;
 - ✓ High priority recommended market enhancements for the:
 - Energy and ancillary services markets

Schedule

- The 2020 SOM is being presented at several meetings:
 - ✓ May 26: Management Committee
 - Overview
 - ✓ June 9: MIWG/ICAPWG
 - Public Policy focus
 - ✓ June 17: MIWG/ICAPWG
 - Capacity Market focus
 - ✓ June 25: MIWG/ICAPWG
 - Energy and Ancillary Services focus
 - ✓ TBD: Details on the capacity accreditation recommendation
 - ✓ TBD: Concerns with locational capacity market requirements
 - \checkmark Additional slots can be scheduled if there is interest.

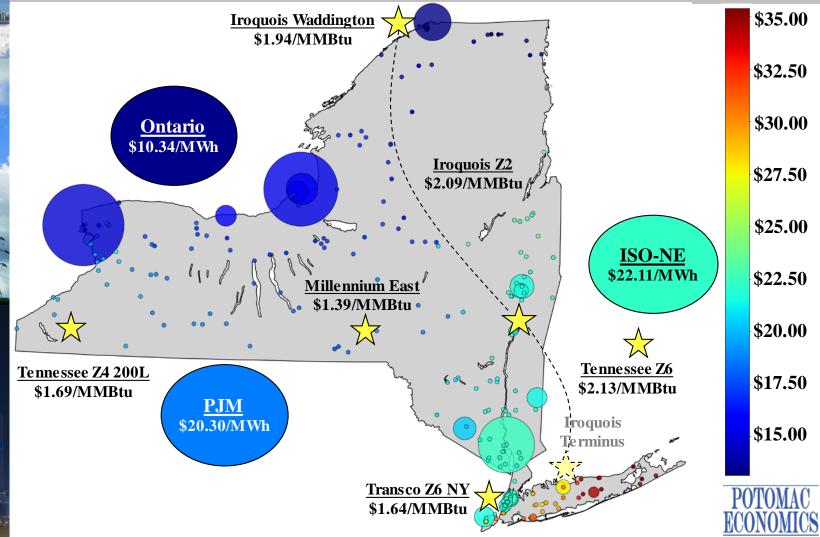


Market Outcomes

Section II.A

Market Outcomes: All In Price Trends

- Energy prices have fallen because of:
 - ✓ Gas prices; and
 - Lower demand due to weather, COVID, and long-term trends
- The most significant congestion was:
 - Central East interface
 - ✓ In Long Island
 - Across West Zone
 - ✓ From North to


Central

POTOMAC ECONOMICS

Sections II.E and V Appendix Section III

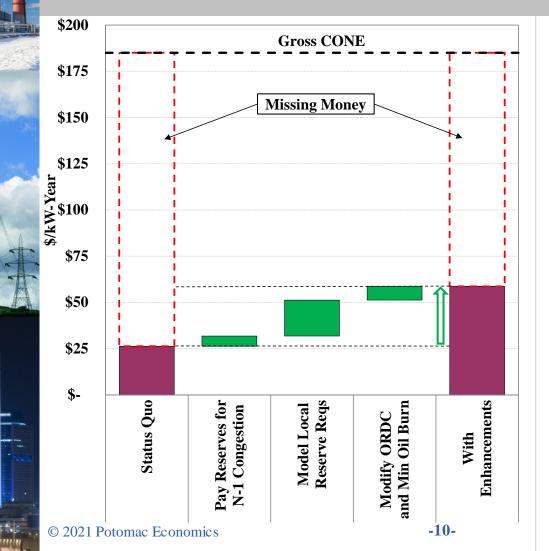
Market Outcomes: Congestion Patterns

Recommended Market Enhancements

Section XII

Prioritizing Market Enhancements

- Unprecedented levels of policy-driven investment expected over the coming decade
- The NYISO should focus on enhancements that:
 - ✓ Guide renewable investment to where it is most deliverable
 - Provide incentives for investment in flexible resources that help with:
 - Integrating intermittent renewables, while
 - Maintaining reliability
 - ✓ Encourage retirement of inflexible existing generators
- Accomplishing this will require prudent improvements to better value energy and ancillary service providers.

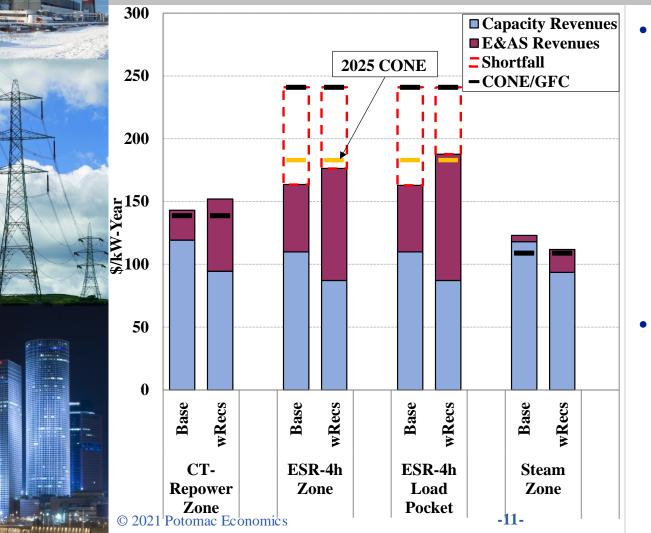


Investment Signals: Enhancing Incentives for Key Attributes

- Increasing E&AS net revenues for flexible units would:
 - ✓ Reduce the capacity revenues needed to maintain reliability
 - ✓ Encourage older inflexible units to retire
- The NYISO is working on addressing four recommendations:
 - ✓ 2015-16: Dynamic reserve requirements
 - ✓ 2017-1: NYC locational reserve requirements
 - ✓ 2016-1: Compensate reserves that increase transfer capability
 - ✓ 2017-2: Reserve demand curve increases
- The incentive effects are estimated in the following three slides based on system conditions from 2018 to 2020.
 - ✓ Increased penetration of intermittent generation will accentuate these incentive effects.

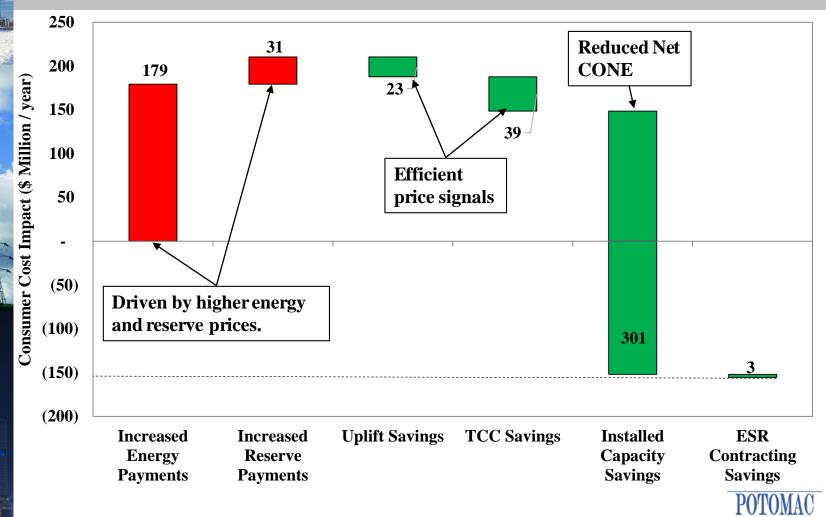
-9-

Investment Signals: Impact of Pricing Incentives on Net Revenues



- Results show impact on NYC Frame unit.
- Recommendations
 boost net revenues by
 123 percent.
 - ✓ Reduces Net CONE
- Largest impact from modeling local reserve requirements
- Effects increased by future peaker retirements and

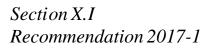
intermittency



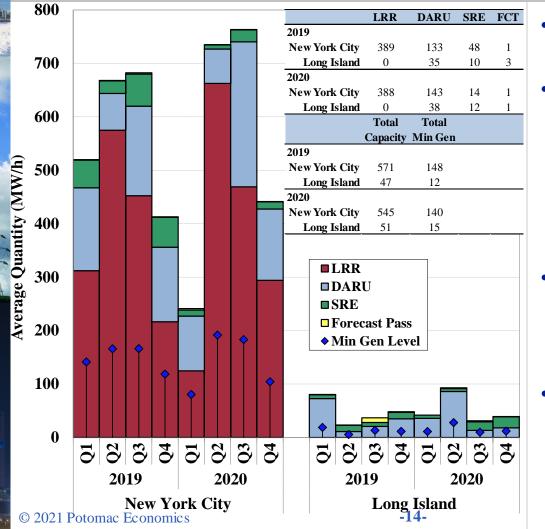
Effects of Energy & Ancillary Services Market Enhancements in NYC

- Incentives shift value from capacity to energy and reserves
 - Net benefit for newer, flexible technologies
 - Net detriment to older, inflexible technologies
- Emphasizes the importance of locational incentives

Effects of Energy & Ancillary Services NYC Consumer Costs



Energy Market Enhancements: Reserves for NYC Congestion Management

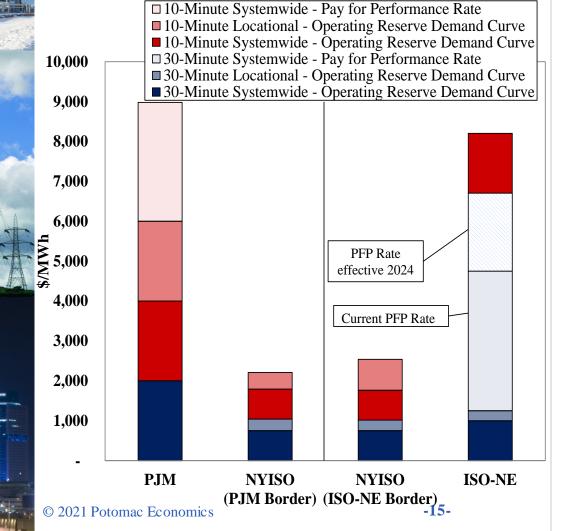

		Average Constraint Limit (MW)			Additional Reserves	
Transmission Facility		N-1 Limit	Seasonal	Seasonal	Above	Percent
		Used	LTE	STE	LTE	Increase
345 kV	Gowanus-Farragut	1064	834	1303	230	28%
	Motthavn-Rainey	1050	833	1298	217	26%
	Dunwodie-Motthavn	1101	857	1309	244	28%
	Sprnbrk-W49th ST	1305	977	1541	329	34%
	Farragu-E13th ST	1128	943	1347	184	20%
	Goethals-Gowanus	962	748	1241	214	29%
138 kV	Foxhills-Greenwd	311	247	376	64	26%
	Gowanus-Greenwd	348	317	378	31	10%
	Vernon-Greenwd	257	237	278	20	8%

- Nearly 70 percent (\$40 million) of real-time congestion during 2020 occurred on constraints that would have been loaded above LTE after a single contingency.

Energy Market Enhancements: Supplemental Commitments for Reserves

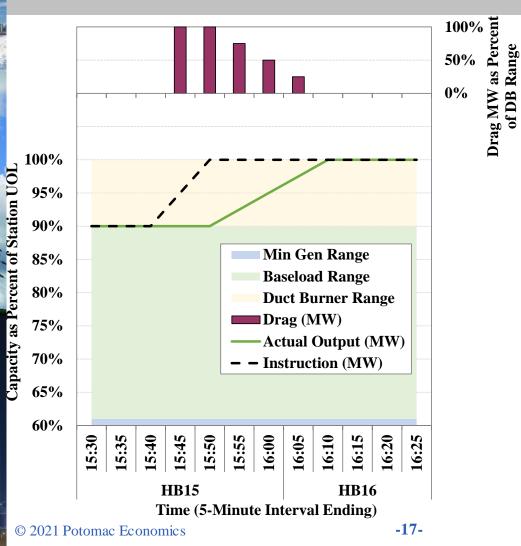


Frequent NYC ST and CC commitments for reserves.


DARU and LRR commitments account for:

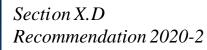
- 45 percent of NYC ST run hours
- ✓ 42 percent of NYC ST energy
- Local energy and reserve prices are understated because they do not reflect these costs
- Model reserve constraints that drive these commitments


Energy Market Enhancements: Shortage Pricing Disparities and Associated Risks


- Different regional 30min shortage adders:
 - ✓ NYISO: \$1,000
 - ✓ PJM: \$2,000
 - ✓ ISO-NE: \$6,700
- 10-min shortage adders:
 - ✓ NYISO: \$2,450
 - ✓ PJM: \$9,000
 - ✓ ISO-NE: \$8,200
- Recommend levels that would stop OOM actions to maintain reliability and reflect reliability value.POTOMAC RCONOMICS

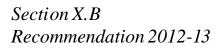
Energy Market Enhancements: Considerations for Fixed-Block Output

- A few of our recommendations address complications that arise due to fixed-block generation such as peaking units and duct-firing ranges of combined cycle units.
 - ✓ 2020-1: Consider enhanced scheduling in real-time of duct-firing capacity.
 - ✓ 2020-2: Eliminate offline fast-start pricing from RTD
 - ✓ 2012-13: Adjust RTD and RTC look ahead evaluations to be more consistent with gas turbine commitment ramp requirements.
- The following three charts illustrate issues that relate to these recommendations:
 - ✓ Issues with modeling duct burners as "incremental energy step" in the combined cycle output range.
 - ✓ Efficiency of offline GT fast-start pricing performance.
 - ✓ GT commitment efficiency and performance.

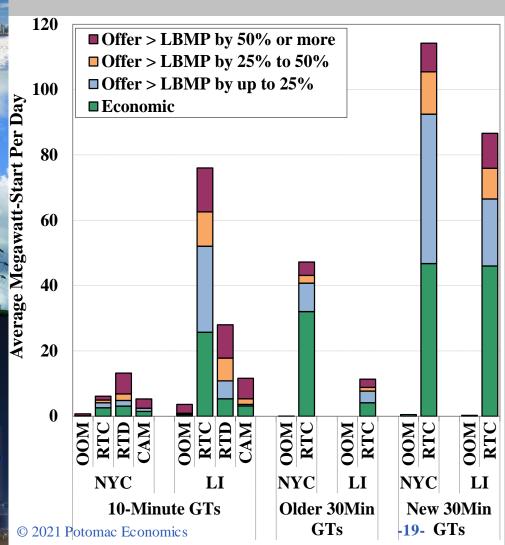


Energy Market Enhancements: Consider Duct Burner Modeling Enhancements

- Duct burners include>760 MW SummerCapacity.
- Currently considered 10-minute and regulation capable.
- Physical characteristics to consider:
 - Duct Burner start time (>10 minutes)
 - ✓ Slower ramp rate
 - Limited
 responsiveness
 (AGC)



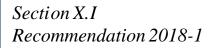
Energy Market Enhancements: Offline GT Price-Setting Elimination



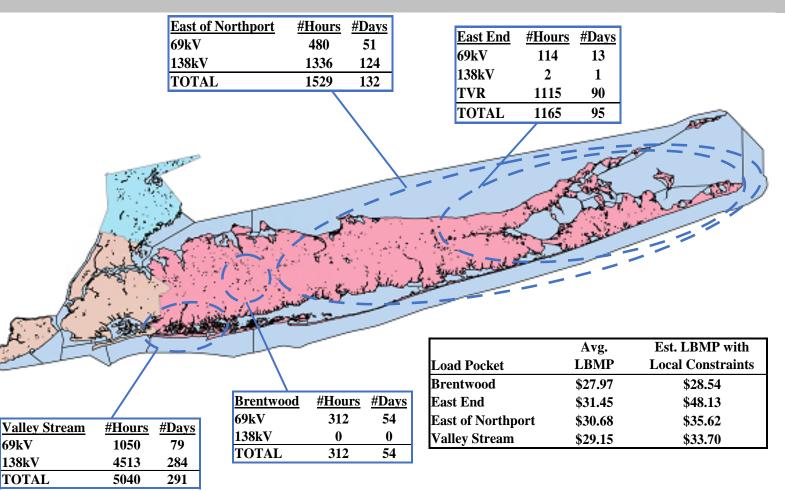
◦ Constraint Violation Recognized by RTD ◦ Constraint Violation after Removing Relief from Offline GTs

- Offline GT pricing treats offline GTs as able to respond to dispatch instructions when they cannot actually do so.
- Use of offline GT pricing indirectly leads to artificially low transmission limits (and flows) in areas more reliant on peaking units.

Energy Market Enhancements: GT Commitment Efficiency



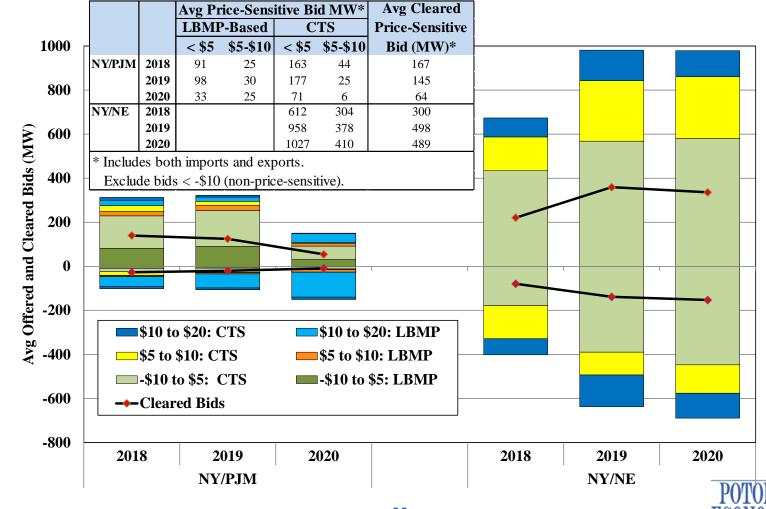
- Overcommitment of GTs leads to:
 - Depressed prices
 - Higher uplift
- Only 42 percent of GT starts were clearly economic.
- Two reasons for inefficient GT commitments:
 - RTC/RTD divergence
 - Current offline faststart price setting rules

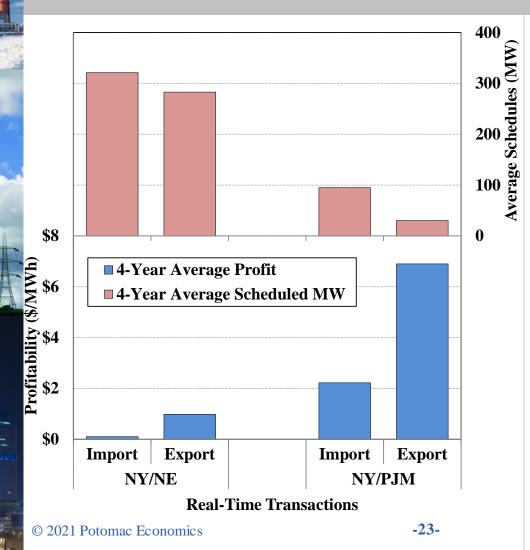


Energy Market Enhancements: Modeling Constraints on Long Island

- OOM actions were frequently taken to manage low voltage constraints on Long Island.
- OOM actions can:
 - Make transmission bottlenecks less transparent to investors
 - Suppress energy and ancillary service prices
- Modeling low-voltage constraints in the market software would:
 - ✓ Facilitate more efficient PAR operations
 - ✓ Reduce inefficient oil-fired genreation
 - 320 hours in East of Northport pocket of potentially avoidable oil-fired peaker output.
- The NYISO began to secure two 69-kV circuits in mid-April 2021.
 - ✓ This was a positive step towards implementing elements of our Recommendation #2018-1.
- The following slide outlines OOM actions in Long Island for low voltage issues during 2020. © 2021 Potomac Economics

Energy Market Enhancements: Modeling Constraints on Long Island





Energy Market Enhancements: Assessment of CTS Transaction Bids and Offers

Energy Market Enhancements: CTS Transactions Profitability

- #2015-9 would eliminate fees for CTS transactions at NY-PJM border.
- Elimination of fees would improve use of NY-NE interface.
- CTS transactions do not drive transmission investment costs
- Lower fees would:
 - Encourage pricesensitive scheduling
 - ✓ Potentially increase revenue collection
 - Help integrate renewables

